O papel das nucleases no laboratório de biologia molecular: vilãs ou aliadas?

  • Silvana Beres CASTRIGNANO Núcleo de Doenças Respiratórias, Centro de Virologia, Instituto Adolfo Lutz, São Paulo, SP, Brasil

Resumen

Em laboratório de biologia molecular existem normas para prevenir que nucleases destruam os ácidos nucleicos em análise. Rígida adesão a estas normas é primordial, principalmente em laboratórios de análises clínicas e ao se lidar com amostras com número restrito de cópias do genoma-alvo. Em contraposição, diversas nucleases têm tido importância fundamental, por exemplo, na identificação do ácido nucleico de vírus, investigação de RNA mensageiro, purificação de vírus em abordagem metagenômica, edição de genomas com o sistema CRISPR/Cas e descoberta de enzimas. O conhecimento de como nucleases podem ser tanto vilãs quanto aliadas é essencial na formação de todos que trabalham no campo de biologia molecular.

Citas

1. Mishra NC. Nucleases: Molecular biology and applications. Hoboken (NJ): Wiley-Interscience;2002.
2. Farrell Jr. RE. RNA methodologies. A laboratory guide for isolation and characterization. 4.ed. Boston (MA): Academic Press;2010.
3. Miller JM, Astles R, Baszler T, Chapin K, Carey R, Garcia L et al. Guidelines for safe work practices in human and animal medical diagnostic laboratories. Recommendations of a CDC-convened, Biosafety Blue Ribbon Panel. MMWR Suppl. 2012;61(1):1-102. Disponível em: https://www.cdc.gov/mmwr/pdf/other/su6101.pdf
4. Sambrook J, Russell DW, editors. Molecular cloning: a laboratory manual. 3.ed. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press;2001.
5. Whelan S. Viral replication strategies. In: Knipe DM, Howley, PM, editors. Fields virology. 6.ed. Philadelphia (PA): Lippincott Williams and Wilkins; 2013. pp. 105-26.
6. Pereira HG, Flewett TH, Candeias JAN, Barth OM. A virus with a bisegmented double-stranded RNA genome in rat (Oryzomys nigripes) intestines. J Gen Virol. 1988; 69(Pt 11):2749-54. http://dx.doi.org/10.1099/0022-1317-69-11-2749
7. Rittié L, Perbal B. Enzymes used in molecular biology: a useful guide. J Cell Commun Signal. 2008;2(1-2):25-45. http://dx.doi.org/10.1007/s12079-008-0026-2
8. Ludert JE, Hidalgo M, Gil F, Liprandi F. Identification in porcine faeces of a novel virus with a bisegmented double stranded RNA genome. Arch Virol. 1991;117(1-2):97-107.
9. Ehresmann C, Baudin F, Mougel M, Romby P, Ebel J-P, Ehresmann B. Probing the structure of RNAs in solution. Nucleic Acids Res. 1987;15(22):9109-28. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC306456/
10. Tomaru Y, Takao Y, Suzuki H, Nagumo T, Koike K, Nagasaki K. Isolation and characterization of a single-stranded DNA virus infecting Chaetoceros lorenzianus Grunow. Appl Environ Microbiol. 2011;77(15):5285-93. http://dx.doi.org/10.1128/AEM.00202-11
11. Alexander M, Heppel LA, Hurwitz J. The purification and properties of micrococcal nuclease. J Biol Chem. 1961;236(11):3014-9. Disponível em: http://www.jbc.org/content/236/11/3014.long
12. Baltimore D. RNA-dependent DNA polymerase in virions of RNA tumour viruses. Nature. 1970;226(5252):1209-11.
13. Temin HM, Mizutani S. RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Nature. 1970;226(5252):1211-3.
14. Knipe DM, Howley PM, editors. Fields virology. 6.ed. Philadelphia (PA): Lippincott Williams and Wilkins;2013.
15. Weinberger B, Plentz A, Weinberger KM, Hahn J, Holler E, Jilg W. Quantitation of Epstein-Barr virus mRNA using reverse transcription and real-time PCR. J Med Virol. 2004;74(4):612-8. https://doi.org/10.1002/jmv.20220
16. Iwata S, Wada K, Tobita S, Gotoh K, Ito Y, Demachi-Okamura A et al. Quantitative analysis of Epstein-Barr virus (EBV)-related gene expression in patients with chronic active EBV infection. J Gen Virol. 2010;91(Pt 1): 42-50. http://dx.doi.org/10.1099/vir.0.013482-0
17. Bressollette-Bodin C, Nguyen TV, Illiaquer M, Besse B, Peltier C, Chevallier P et al. Quantification of two viral transcripts by real time PCR to investigate human herpesvirus type 6 active infection. J Clin Virol. 2014; 59(2):94-9. http://dx.doi.org/10.1016/j.jcv.2013.11.014
18. Greijer AE, Ramayanti O, Verkuijlen SA, Novalić Z, Juwana H, Middeldorp JM. Quantitative multi-target RNA profiling in Epstein-Barr virus infected tumor cells. J Virol Methods. 2017;241:24-33. http://dx.doi.org/10.1016/j.jviromet.2016.12.007
19. Garlapati S, Wang CC. Identification of an essential pseudoknot in the putative downstream internal ribosome entry site in giardiavirus transcript. RNA. 2002;8(5):601-11. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1370281/
20. Garlapati S, Wang CC. Structural elements in the 5’-untranslated region of giardiavirus transcript essential for internal ribosome entry site-mediated translation initiation. Eukaryot Cell. 2005;4(4):742-54. http://dx.doi.org/10.1128/EC.4.4.742-754.2005
21. Ambrose HE, Clewley JP. Virus discovery by sequence-independent genome amplification. Rev Med Virol. 2006;16(6):365-83. http://dx.doi.org/10.1002/rmv.515
22. Delwart EL. Viral Metagenomics. Rev Med Virol. 2007;17(2):115-31. http://dx.doi.org/10.1002/rmv.532
23. Allander T, Emerson SU, Engle RE, Purcell RH, Bukh J. A virus discovery method incorporating DNase treatment and its application to the identification of two bovine parvovirus species. Proc Natl Acad Sci USA. 2001;98(20):11609-14. http://dx.doi.org/10.1073/pnas.211424698
24. Djikeng A, Kuzmickas R, Anderson NG, Spiro DJ. Metagenomic analysis of RNA viruses in a fresh water lake. PLoS One. 2009;4(9):e7264. http://dx.doi.org/0.1371/journal.pone.0007264
25. Conklin BR. Sculpting genomes with a hammer and chisel. Nat Methods. 2013;10(9):839-40. http://dx.doi.org/10.1038/nmeth.2608
26. Gaj T, Gersbach CA, Barbas CF III. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013;31(7):397-405. http://dx.doi.org/ 10.1016/j.tibtech.2013.04.004
27. Soppe JA, Lebbink RJ. Antiviral goes viral: harnessing CRISPR/Cas9 to combat viruses in humans. Trends Microbiol. 2017;25(10):833-50. http://dx.doi.org/10.1016/j.tim.2017.04.005
28. Saey TH. Gene drivers spread their wings. Science News. 2015;188(12):16. Disponível em: https://www.sciencenews.org/article/gene-drives-spread-their-wings
29. Chen S, Yu X, Guo D. CRISPR-Cas targeting of host genes as an antiviral strategy. Viruses. 2018;10(1):e40. http://dx.doi.org/10.3390/v10010040
Publicado
2018-03-29
Cómo citar
CASTRIGNANO, S. B. (2018). O papel das nucleases no laboratório de biologia molecular: vilãs ou aliadas?. Revista Do Instituto Adolfo Lutz, 77, 1-5. Recuperado a partir de https://periodicoshomolog.saude.sp.gov.br/index.php/RIAL/article/view/34192
Sección
COMUNICAÇÃO CIENTÍFICA